皆空の中で...

5.SWR値と反射波電力・アンテナへ進む電力

SWR値と反射波電力とアンテナへ進む電力(同軸ケーブルとハシゴフィーダの比較)
          (反射波電力は最終的にどのようになるか・どこへ行くのか)
                                    総目次へもどるは ⇒ こちら
.....................このページは次の1~8の中の「5」です。
     ..........1.アンテナと共振周波数
     ..........2.アンテナとインピーダンス
     ..........3.アンテナとフィーダ(給電線)
     ..........4.フィーダー上の高周波電力(進行波と反射波)
     ..........5.SWR値と反射波電力とアンテナへ進む電力
     ..........6.SWRの測定と問題点
     ..........7.アマチュア用SWR計と注意点
     ..........8.同軸ケーブルの長さを調整するとSWRが下がる?

前ページで「アンテナの給電点のインピーダンスがフィーダーの特性インピーダンスと整合していない場合,フィーダ上の進行波電力一部がアンテナの給電点から反射する」ことを書きました。
          前ページ「フィーダ-上の高周波電力(進行波と反射波)」は ⇒ こちら

このページでは「定在波比(SWR)の大きさによって,アンテナへ進む電力がどの程度になるか」を
同軸ケーブルの場合と平行フィーダー(はしごフィーダ)の場合を具体的に計算してみます。
      (まとめは,ページ後半の「ここまでのまとめ」へ進んでください)

次の図 5-1 は7MHz用1/2波長水平ダイポールアンテナへ20m長の同軸ケーブル5D2Vで給電した図です。
アンテナ地上高が12m~14m(3/8波長)の高さではANT中央給電のインピダンスが約90Ωとなるので,その値で計算してみます。
     (公称値75Ωは地上の影響を受けない場合の値です)
ANTインピダンス90Ωへ特性インピダンス50Ωのフィーダで給電するとANT給電点において反射波が生じ,SWRは1.8 となります。
   b01_同軸でSWR1.8の図2
    上図のPtxは送信機の出力電力,PantはANT給電点からアンテナへ進む電力です。

すべてはANT給電点(受端B)での不整合による反射によって生ずるので,この反射点から整理します。
ANT給電点のSWR=1.8, ANT給電点からアンテナへ進んだ電力Pantを仮に50wとして計算してみます。
この点における進行波電力 Pf は前ページの「式4-6」へSWR 1.8 と50wを代入します。
          前ページ「フィーダ-上の高周波電力」は ⇒ こちら
  b02_同軸ケーブル_SWR1.8の説明4
ANT給電点ではSWR=1.8 だったのに送信機近くではSWRは1.7 と低く表示されます。
これは同軸ケーブルの損失がSWRで増加したため,低く表示されたのです。

以上は,周波数7MHz,ANTインピダンス90Ω±j0Ω,ANT給電点SWR=1.8,
同軸ケーブル5D2V長さ20mの場合の値です。
周波数が50MHzと高くなると同軸ケーブル損失が高くなるため,ANT給電点SWR=1.8でも
送信機出力の33%が損失になり,アンテナへは送信機出力の67%が進むとなります。

【SWR=3ならどうなるか?】
アマチュア無線家の中には「 SWR=3なら送信機出力10wとすると,7.5w(75%)がANTから
放射され,2.5w(25%)が反射ロスとなる」と言う方がいますが正しくありません。


SWR=3によって同軸ケーブル上に生ずる進行波電力Pfは,送信機出力10wより高い値
Pf=13.3wとになります。反射波電力Pr は3.3wとなります。
この3.3wが13.3wの25%であり,送信機出力10wの25%ではありません。
          10wのPfPr
反射波電力Pr(25%)はすべて損失となる訳ではありません。同軸ケーブルのロスがゼロ
なら損失となりません.。
極端ですが同軸が10㎝と短ければSWR=3でも損失は微小です。
 (上図の送端Aが整合状態なので送信機側へもどることもありません)。



はしごフィーダ(600Ω)を使用し, SWR=8の状態で給電した場合を計算してみます。
下図 5-2 ではアンテナインピーダンスZantが75Ωとなる地上高17mにしています。
  b03_はしごフィーダSWR8の図

  b04_ハシゴフィーダSWR8の説明4

下図 5-3 はこれらを絵にしたものです。
   進行波電力の絵2


ここまでのまとめ,
周波数7MHzの場合、
(1) 同軸ケーブル5D2V 20mをSWR= 1.8で使用すると,送信機出力電力100wの88%がアンテナへ
   進む。  (SWR=1.5で計算すると,89%がアンテナへ進む)

(2) 600Ωの「はしごフィーダ 」を使用するとSWR= 8となり,反射率60%となるが,その反射は
   フィーダ上に発生した進行波電力に対するものであり,送信機出力電力に対するものではない。
   はしごフィーダでは送信機出力電力100wをフィーダへ送ると96%がアンテナへ進む。

(3) 以上の(1)(2)より,SWRが高くても「はしごフィーダ」の方が同軸ケーブル5D2Vより多くの電力を
   アンテナへ送り込める
 (同軸ケーブルSWR=1.5で比較しても送込める率が高い)。

このように「はしごフィーダー」は優れた性能があるが,一方で
   ・鉄柱や他のケーブルから離して引き降ろす必要がある
   ・回転させる八木アンテナなどでは鉄柱から離す仕組みが難しい
   ・平行フィーダー用の整合器(アンテナカップラー:アンテナチューナー)の市販品が少ない
   ・フィーダーの平衡度が低いとフィーダーから電波が輻射される(逆に,ノイズを受けやすい)
   ・フィーダ線の間隔が0.1波長を越えるとフィーダから輻射が起きるので30MHz以上で使用
    できる「はしごフィーダ」の自作が難しい。
などから最近はアマチュア無線ではあまり使用されていない。

ですが,「はしごフィーダー」は7.0MHz~7.19MHzなどバンド幅の両端でSWR値が高くなっても損失が
少ないこと,また,1つのアンテナ線で他の周波数のアンテナとしても使用するなどの際に利用できる
ことなどから,一部のアマチュア無線家の間で今も愛用されています。

業務用としては,かってNTT名崎無線送信所などで短波送信アンテナへの給電線として平行フィーダ
が使用されました。
現在でも,NHK国際放送の八俣送信所(300kw)のアンテナ用や,ラジオニッケイの短波放送(50Kw)
の送信アンテナの給電線として平行フィーダが使用されています。
(これらの送信所ではアンテナ給電点のインピーダンスが300Ωとなるフォールデット(折り返し)
 ダイポールアンテナを使用し,フィーダとしても片側2線(計4線)の特性インピーダンス300Ωで
 給電するなどしてSWRを低くしているようです。)

「反射波は最終的にどこへゆくのか,どうなるのか」については,
前ページに書いたように「送信機側の送端A(境界点)へもどった反射波電力は,その境界点における
エネルギ-総和 Pf+(-Pr)=Ptx の役割を担っている。
その境界点における進行波電力と不可分の状態であり,境界点(送端A)の整合が完全であれば,
送端Aを通過して送信機側へもどることも,反射波電力が送端Aからアンテナ方向へ再び進むことも
起きない・・・と整理してよいのではと考えます。
   (どこかへ行くには反射電力のみでなく進行波電力も含めてでなければ境界点の条件を満足しない)


【参考】
下図は,ARRLの「The Radio Amateur's Handbook」1964版に掲載されていた同軸ケーブルと
ハシゴフィーダーの損失グラフです。
はしごフィーダーの損失は同軸ケーブルの10分の1です。
下図右は,SWRが発生時の追加損失分のグラフです。
はしごフィーダーはSWR=8程度で使用されるケースが多いですが,下図左のようにハシゴフィーダーの
損失は14MHz帯で100フィート長でも損失は0.07db程度なので,SWR=8による追加損失増加分を
加えてもも0.2db程度でしょう(下図右の図の左側の外側になります)。
          (図をクリックで拡大して目盛をみてください)
     ARRLハンドブックフィーダーロス
     ARRLハンドブック_フィーダー追加ロス


・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
訂正:従前、このページで次の図を示し,
 「反射波はフィーダ上を行ったり来たりしながら,ANT給電点から少しずつアンテナ側へ進む」
と書きましたが,
   (1) 反射波電力を進行波電力でなく送信機出力電力に対するものとした,
   (2) 送信機側の送端Aへもどった反射波が「再びアンテナ方向へ進む」とした,
の点が適切でないとわかりました。
     反射波はフィーダ上を再び進む
仮に「再び進行波電力に加わってアンテナ方向へ進む」としたら,加わった分 進行波電力が
増加します。
増加した進行波電力がANT給電点で反射することとなり,これを繰り返すとフィーダー上の
電力が増大を続けることとなる・・・そのような事はありえないでしょう。


次ページのSWR計の注意事項へ続くは ⇒ こちら


総目次へもどるは ⇒ こちら

  1. 2017/04/10(月) 17:11:17|
  2. アンテナと整合
  3. | トラックバック:0
  4. | コメント:7
次のページ